Attempts at classifying living things into groups have been made since time immemorial. Greek thinker Aristotle classified animals according to whether they lived on land, in water or in the air. This is a very simple way of looking at life, but misleading too. For example, animals that live in the sea include corals, whales, octopuses, starfish and sharks. We can immediately see that these are very different from each other in numerous ways. In fact, habitat is the only point they share in common. This is not an appropriate way of making groups of organisms to study and think about.
We therefore need to decide which characteristics to be used as the basis for making the broadest divisions. Then we will have to pick the next set of characteristics for making sub-groups within these divisions. This process of classification within each group can then continue using new
characteristics each time.
Before we go on, we need to think about what is meant by ‘characteristics’. When we are trying to classify a diverse group of organisms, we need to find ways in which some of them are similar enough to be thought of together. These ‘ways’, in fact, are details of appearance or behaviour, in other words, form and function.
What we mean by a characteristic is a particular feature or a particular function. That most of us have five fingers on each hand is thus a characteristic. That we can run, but the banyan tree cannot, is also a characteristic.
Now, to understand how some characteristics are decided as being more fundamental than others, let us consider how a stone wall is built. The stones used will have different shapes and sizes. The stones at the top of the wall would not influence the choice of stones that come below them. On the other hand, the shapes and sizes of stones in the lowermost layer will decide the shape and size of the next layer and so on.
The stones in the lowermost layer are like the characteristics that decide the broadest divisions among living organisms. They are independent of any other characteristics in their effects on the form and function of the organism. The characteristics in the next level would be dependent on the previous one and would decide the variety in the next level. In this way, we can build up a whole hierarchy of mutually related characteristics to be used for classification.
Now-a-days, we look at many inter-related characteristics starting from the nature of the cell in order to classify all living organisms.
What are some concrete examples of such characteristics used for a hierarchical classification?
• A eukaryotic cell has membrane-bound organelles, including a nucleus, which allow cellular processes to be carried out efficiently in isolation from each other. Therefore, organisms which do not have a clearly demarcated nucleus and other organelles would need to have their
biochemical pathways organised in very different ways. This would have an effect on every aspect of cell design. Further, nucleated cells would have the capacity to participate in making a multicellular organism because they can take up specialised functions. Therefore, nucleus
can be a basic characteristic of classification.
• Do the cells occur singly or are they grouped together and do they live as an indivisible group? Cells that group together to form a single organism use the principle of division of labour. In such a body design, all cells would not be identical. Instead, groups of cells will carry out specialised functions. This makes a very basic distinction in the body designs of organisms. As a result, an Amoeba and a worm are very different
in their body design.
• Do organisms produce their own food through the process of photosynthesis? Being able to produce one’s own food versus having to get food from outside would make very different body designs.
• Of the organisms that perform photosynthesis (plants), what is the level of organisation of their body?
• Of the animals, how does the individual’s body develop and organise its different parts, and what are the specialised organs found for different functions?
We can see that, even in these few questions that we have asked, a hierarchy is developing. The characteristics of body design used for
classification of plants will be very different from those important for classifying animals. This is because the basic designs are different,
based on the need to make their own food (plants), or acquire it (animals). Therefore, these design features (having a skeleton, for example) are to be used to make sub-groups, rather than making broad groups.